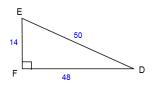
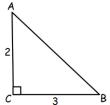
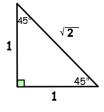

Trigonometric Ratios

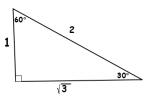
Date: _____ Period: ____


<u>Trigonometry</u> - from the Greek language. It means "triangle measurement."

trigonometric ratio - ratio of the lengths of two sides of a right triangle


SOH CAH TOA


Example #1: Find the sine, cosine, and tangent of the indicated angle (\$\(\pexitt{D}\) & \$\(\pexitt{E}\)).

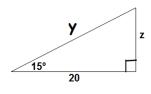


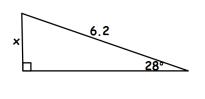
Example #2: Find the sine, cosine, and tangent of the indicated angle (≰A & ≰B)

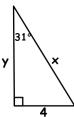
Trigonometric Ratios for Special Right Triangles

sin 45° = _____

Geometry	Name:	
Guided Notes		
Trigonometric Ratios	Date:	Period:
Finding trigonometric ratios for triangles that are not 45° - 45° - 90° or 30° - 60° - 90°		

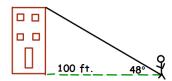

YOU MUST USE A CALCULATOR!


- 1. Place the calculator in degree mode.
- 2. Find the sin, cos and tan buttons.


Example #3: Use a calculator to approximate the given value to four decimal places.

Using trigonometric functions to find a side

Example #4: Solve for the variable(s). Round the final answer(s) to one decimal place. Do not round until the final answer.



Angle of Elevation

Example #5: You are measuring the height of a building. You stand 100 feet from the base of the building. You measure the angle of elevation from a point on the ground to the top of the building to be 48°. Estimate the height of the building.

