Station 1

This Venn diagram shows the name of students in Ms. Avery's class that like Six Flags and White Water.

Use the information in the Venn diagram above for questions 1-3.

1. Find $\mathrm{P}($ Six Flags \cup White Water $)$.
2. Find the $\mathrm{P}($ Six Flags \cap White Water $)$.
3. Find $P($ Six Flags \cap White Water')
4. Find $P(S i x$ Flags \cap White Water)'

Station 2

1. If $P(A)$ is the probability that an event will occur, which of the following must be false? Can be more than one answer
A. $\frac{5}{3}$
B. 0
C. $-\frac{1}{4}$
D. $\frac{1}{5}$
2. Write in set notation: $P(A$ or $B)=$ \qquad
3. The complement of the intersection of sets A and B.
4. At Pizza City, Peperoni is a popular topping. If set P represent the number of peperoni pizza ordered and S represents the number of Sausage pizza ordered, write the set notation of the intersection of the total pizzas topped with Peperoni and those topped with Sausage.

Station 3

1. A bag contains eight red marbles, seven blue marbles, and three green marbles. You randomly pick a marble and then pick a second marble without returning the marbles to the bag. What is the probability the first marble is red and the second is blue?
2. $P(J)=0.32 \quad P(K)=0.6$

Given that these are independent events, estimate P(J and K).
3. Which of the following events are independent given $P(A), P(B)$, and $P(A$ and $B)$? (Can be more than one answer.)
a. $\quad P(A)=\frac{1}{2} P(B)=\frac{1}{2} P(A$ and $B)=\frac{11}{40}$
b. $\quad P(A)=\frac{1}{5} P(B)=\frac{3}{10} P(A$ and $B)=\frac{3}{50}$
c. $\quad P(A)=0.4 \quad P(B)=0.6 \quad P(A \cap B)=0.18$
d. $\quad P(A)=0.3 P(B)=0.4 P(A \cap B)=0.12$
e. $\quad P(A)=\frac{3}{5} P(B)=\frac{7}{10} P(A$ and $B)=\frac{21}{50}$
f. $\quad P(A)=0.2 \quad P(B)=0.45 \quad P(A \cap B)=0.09$
4. If a card is drawn and the spinner below is spun once, what is the probability of drawing a " j " and spinning a blue?

\mathbf{j}	\mathbf{j}	\mathbf{p}	\mathbf{f}	\mathbf{p}	\mathbf{j}
\mathbf{f}	\mathbf{p}	\mathbf{j}	\mathbf{f}	\mathbf{j}	\mathbf{p}

Station 4

1. The letters that spell HIPPOPOTAMUS are put into a bag. What is the probability of selecting a vowel and then, without replacing, selecting a P ?
2. A bag contains four Falcons hats, 3 Hawks hats, and five Braves hats. You randomly pick a hat and then return it to the bag before picking another. What is the probability of picking a Braves hat the first time and a Falcons hat the second?
3. Your flip a coin three times. What is the probability that the first flip lands headsup, the second flip lands heads-up, and the third flip lands on tails?

Station 5

1. In families that own more than one vehicle, 46% of them have a car and an SUV and 58% have an SUV. What percentage of families have car given that they have an SUV?
2. Of 750 people surveyed, 345 like Arby's, 405 like Zaxby's, and 286 like Arby's and Zaxby's. What is the probability that a person chosen at random likes Arby's given that they like Zaxby's?
3. When looking at the association between the events "speaking Spanish" and "speaking French", if the events are independent, then the probability:
$\mathrm{P}($ speaking Spanish \mid speaking French $)$ is equal to \qquad .

Station 6

	Sport Utility Vehicle (SUV)	Sports Car	Totals
male	21	39	60
female	135	45	180
Totals	156	84	240

1. P(SUV I female)
2. $\mathrm{P}($ Sports Car I Male)
3. P(female I sports car)

High School Diploma Bachelor's Degree Master's/ Doctoral Degree Total Male 16 46 65 Female 51 3				
Total	28		6	

4. Fill in the table above
5. P(High School Diploma I Female)
6. P(Bachelor's Degree I Male)
